及时调整是将预训练模型调整到下游任务的极其有效的工具。但是,基于标准及时的方法主要考虑下游任务的足够数据的情况。目前尚不清楚是否可以将优势传输到几杆式制度,在每个下游任务中只有有限的数据。尽管有些作品证明了在几次弹奏设置下及时调整的潜力,但通过搜索离散提示或使用有限数据调整软提示的主流方法仍然非常具有挑战性。通过广泛的实证研究,我们发现迅速调整和完全微调之间的学习差距仍然存在差距。为了弥合差距,我们提出了一个新的及时调整框架,称为软模板调整(STT)。 STT结合了手册和自动提示,并将下游分类任务视为掩盖语言建模任务。对不同设置的全面评估表明,STT可以在不引入其他参数的情况下缩小微调和基于及时的方法之间的差距。值得注意的是,它甚至可以胜过情感分类任务的时间和资源消耗的微调方法。
translated by 谷歌翻译
从自然语言监督中学习视觉表示,最近在许多开创性的作品中表现出了巨大的希望。通常,这些具有语言的视觉模型表现出对各种数据集和任务的强大可传递性。但是,由于缺乏易于使用的评估工具包和公共基准,评估这些模型的可转让性仍然很具有挑战性。为了解决这个问题,我们构建了高级版(评估语言的视觉任务级传输),这是用于评估(预训练)语言增强视觉模型的第一个基准和工具包。升华由三个组成部分组成。 (i)数据集。作为下游评估套件,它由20个图像分类数据集和35个对象检测数据集组成,每个数据集都用外部知识来增强。 (ii)工具包。开发了自动高参数调谐工具包,以促进下游任务的模型评估。 (iii)指标。多种评估指标用于测量样品效率(零射击和少量)和参数效率(线性探测和完整模型微调)。我们在https://computer-vision-in-the-wild.github.io/elevater/上公开发布leverater
translated by 谷歌翻译
In computer vision, it has achieved great transfer learning performance via adapting large-scale pretrained vision models (e.g., vision transformers) to downstream tasks. Common approaches for model adaptation either update all model parameters or leverage linear probes. In this paper, we aim to study parameter-efficient model adaptation strategies for vision transformers on the image classification task. We formulate efficient model adaptation as a subspace training problem and perform a comprehensive benchmarking over different efficient adaptation methods. We conduct an empirical study on each efficient model adaptation method focusing on its performance alongside parameter cost. Furthermore, we propose a parameter-efficient model adaptation framework, which first selects submodules by measuring local intrinsic dimensions and then projects them into subspace for further decomposition via a novel Kronecker Adaptation (KAdaptation) method. We analyze and compare our method with a diverse set of baseline model adaptation methods (including state-of-the-art methods for pretrained language models). Our method performs the best in terms of the tradeoff between accuracy and parameter efficiency across 20 image classification datasets under the few-shot setting and 7 image classification datasets under the full-shot setting.
translated by 谷歌翻译
卷积神经网络(CNNS)在许多实际应用中成功了。但是,它们的高计算和存储要求通常使它们难以在资源受限的设备上部署。为了解决这个问题,已经提出了许多修剪算法用于CNN,但大多数人不能将CNNS提交给合理的水平。在本文中,我们提出了一种基于递归最小二乘(RLS)优化的训练和修剪CNN的新颖算法。在为某些时期培训CNN之后,我们的算法组合了逆输入自相关矩阵和权重矩阵,以按层评估和修剪不重要的输入通道或节点层。然后,我们的算法将继续培训修剪的网络,并且在修剪的网络恢复旧网络的完整性能之前,不会进行下一次修剪。此外,对于CNN,所提出的算法可用于前馈神经网络(FNN)。在MNIST,CIFAR-10和SVHN数据集上的三个实验表明,我们的算法可以实现更合理的修剪,并且具有比其他四个流行的修剪算法更高的学习效率。
translated by 谷歌翻译
回声状态网络(ESN)是一种特殊类型的复发性神经网络,用于处理时间序列数据集。然而,受代理顺序样本之间的强相关的强烈相关性,基于ESN的策略控制算法难以使用递归最小二乘(RLS)算法来更新ESN的参数。为了解决这个问题,我们提出了两种新颖的政策控制算法,esnrls-q和esnrls-sarsa。首先,为了减少训练样本的相关性,我们使用泄漏的积分器ESN和迷你批量学习模式。其次,为了使RLS适用于迷你批量模式的训练ESN,我们提出了一种用于更新RLS相关矩阵的新平均近似方法。第三,为了防止ESN过度拟合,我们使用L1正则化技术。最后,为了防止目标状态动作价值高估,我们采用了MOLLMAX方法。仿真结果表明,我们的算法具有良好的收敛性能。
translated by 谷歌翻译
使用图像文本对的对比语言图像预测(剪辑)在零拍摄和传输学习设置中的图像分类中取得了令人印象深刻的结果。但是,我们表明,直接应用此类模型以识别对象检测的图像区域导致由于域移位导致的性能差:剪辑训练以与文本描述的整体匹配,而不捕获图像之间的细粒度对齐地区和文本跨度。为了缓解此问题,我们提出了一种称为RegionClip的新方法,可显着扩展剪辑以学习区域级视觉表示,从而在图像区域和文本概念之间实现细粒度对齐。我们的方法利用剪辑模型将图像区域与模板标题匹配,然后预先列出我们的模型以对准要素空间中的这些区域文本对。将预磨料模型转移到开放词汇对象检测任务时,我们的方法显着优于3.8 AP50和2.2 AP的最新技术,分别用于COCO和LVIS数据集的新型类别。更多,学习区域表示支持对象检测的零拍摄推断,显示了对COCO和LVIS数据集的有希望的结果。我们的代码可在https://github.com/microsoft/regionclip上获得。
translated by 谷歌翻译
本文介绍了用于学习对象级别,语言感知和富含语义的视觉表示的接地语言图像预培训(GLIP)模型。 Glip统一对象检测和短语进行预培训。统一带来了两个好处:1)它允许GLIP从检测和接地数据中学习,以改善两个任务和引导良好的接地模型; 2)GLIP可以通过以自培训方式产生接地盒来利用大规模的图像文本对,使学习的表示是语义丰富的。在我们的实验中,我们在27M的接地数据上预先列车触胶,包括3M人的注释和24M Web爬网的图像文本对。学习的表示表明了强烈的零射击和对各种对象识别任务的可转换性。 1)直接在Coco和LVIS上评估(在训练期间没有在Coco中看到任何图像)时,Plip分别达到49.8 AP和26.9 AP,超过许多监督基线。 2)在COCO上微调后,GLIP在Val和61.5 AP上实现60.8 AP在测试开发上,超过先前的SOTA。 3)当转移到下游对象检测任务时,具有完全监控动态头的1次触发器竞争对手。代码将在https://github.com/microsoft/glip发布。
translated by 谷歌翻译
培训文本到图像生成模型中的主要挑战之一是需要大量的高质量图像文本对。虽然图像样本通常很容易接近,但相关的文本描述通常需要仔细的人类标题,这是特别的 - 耗时和成本耗费。在本文中,我们提出了第一项工作来培训没有任何文本数据的文本到图像生成模型。我们的方法利用了强大的预训练剪辑模型的良好对齐的多模态语义空间:通过从图像特征生成文本特征,无缝地减轻了文本调节的要求。进行广泛的实验以说明所提出的方法的有效性。我们在标准的文本到图像生成任务中获得最先进的结果。重要的是,拟议的无语模型优于具有完整图像文本对训练的大多数现有型号。此外,我们的方法可以应用于微调预先训练的模型,它可以节省培训文本到图像生成模型的培训时间和成本。我们预先接受的模型在MS-Coco DataSet上获得竞争激烈的结果,在零拍摄的图像集中在MS-Coco DataSet上产生竞争结果,但距离最近提出的大型Dall-E型号的模型大小和培训数据大小约为1%。
translated by 谷歌翻译
自动视觉解对我们多样化和开放的世界需要计算机视觉模型,以概括为特定任务的最小定制,类似于人类视力。计算机视觉基础型号培训,培训多样化,大型数据集,可以适应各种下游任务,对该任务来解决现实世界计算机视觉应用而言至关重要。虽然现有的视觉基础模型如剪辑,对齐和吴道2.0主要集中在映射图像和文本表示到跨模型共享表示,我们介绍了一台新的计算机视觉基础模型,佛罗伦萨,扩大粗糙的表示(现场)到精细(对象),从静态(图像)到动态(视频),以及从RGB到多个模态(标题,深度)。通过从Web级图像文本数据中纳入通用视觉语言表示,我们的佛罗伦萨模型可以很容易地适应各种计算机视觉任务,例如分类,检索,对象检测,VQA,图像标题,视频检索和动作识别。此外,佛罗伦萨在许多类型的转移学习中表现出出色的表现:全面采样的微调,线性探测,几次射击传输和用于新颖图像和物体的零拍摄传输。所有这些属性对于我们的视觉基础模型至关重要,以提供通用视觉任务。佛罗伦萨实现了新的最先进的导致44个代表性基准,例如Imagenet-1K零射击分类,最高1精度为83.74,最高5个精度为97.18,62.4地图上的Coco微调, 80.36在VQA上,动力学-600上的87.8。
translated by 谷歌翻译
本文研究了两种技术,用于开发有效的自我监督视觉变压器(ESVIT)进行视觉表示学习。首先,我们通过一项全面的实证研究表明,具有稀疏自我生产的多阶段体系结构可以显着降低建模的复杂性,但具有失去捕获图像区域之间细粒度对应关系的能力的成本。其次,我们提出了一项新的区域匹配训练任务,该任务使模型可以捕获细粒的区域依赖性,因此显着提高了学习视觉表示的质量。我们的结果表明,ESVIT在ImageNet线性探针评估上结合两种技术,在ImageNet线性探针评估中获得了81.3%的TOP-1,优于先前的艺术,其较高吞吐量的顺序幅度约为较高。当转移到下游线性分类任务时,ESVIT在18个数据集中的17个中优于其受监督的对方。代码和模型可公开可用:https://github.com/microsoft/esvit
translated by 谷歌翻译